High Energy Dilepton Experiments

Alberica Toia

Physics Department CERN

SPS @ CERN

SuperProtonSynchrotron (since 1976)

- parameters
 - circumference: 6.9 km
 - beams for fixed target experiments
 - protons up to 450 GeV/c
 - lead up to 158 GeV/c

past

- SppS proton-antiproton collider
 → discovery of vector bosons W[±], Z
- now
 - injector for LHC
- experiments
 - Switzerland: west area (WA)
 - France: north area (NA) → dileptons speak french!

Dilepton experiments @ SPS

Experiment		System	Mass range	Publications
HELIOS-1	μμ ee	p-Be (86)	low mass	Z.Phys. C68 (1995) 64
HELIOS-3	μμ	p-W,S-W (92)	low & Intermediate	E.Phys.J. C13(2000)433
CERES	ее	pBe, pAu, SAu (92/93) Pb-Au (95) Pb-Au (96)	low mass	PRL (1995) 1272 Phys.Lett. B (1998) 405 Nucl.Phys. A661 (1999) 23
CERES-2	ее	Pb-Au 40 GeV (99) Pb-Au 158 GeV (2000)	low mass	PRL 91 (2002) 42301 preliminary data 2004
NA38/ NA50	μμ	p-A, S-Cu, S-U, Pb-Pb	low (high m _T) intermediate	E.Phys.J. C13 (2000) 69 E.Phys.J. C14 (2000) 443
NA60	μμ	p-A, In-In (2002,2003) p-A (2004)	>2m _µ	PRL 96 (2006) 162302

The CERES/NA45 experiment

Experimental setup: CERES-1

Target region

- segmented target
 - 13 Au disks (thickness: 25 μm; diameter: 600 μm)
- Silicon drift chambers:
 - provide vertex: $\sigma_z = 216 \mu m$
 - provide event multiplicity ($\eta = 1.0 3.9$)
 - powerful tool to recognize conversions at the target

Electron identification: RICH

- main tool for electron ID
- use the number of hits per ring (and their analog sum) to recognize single and double rings

Dielectron analysis strategy

e⁺e⁻ in p+Be & p+Au collisions dielectron mass spectra and expectation from a

- 'cocktail' of known sources
 - Dalitz decays of neutral mesons ($\pi^0 \rightarrow \gamma e^+e^-$ and $\eta, \omega, \eta', \phi$)
 - dielectron decays of vector mesons $(\rho, \omega, \phi \rightarrow e^+e^-)$
 - semileptonic decays of particles carrying charm quarks

dielectron production in p+p and p+A collisions at SPS dielectron production in p+p and p+A collisions at SPS well understood in terms of known hadronic sources

What about heavy-ion collisions?

- discovery of low mass e⁺e⁻ enhancement in 1995
 - significant excess in S-Au (factor ~5 for m>200 MeV)

As heavy as it gets: Pb+Au

CERES Eur. Phys. Jour. C41(2005)475

- dielectron excess at low and intermediate masses in HI collisions is well established
 - onset at ~2 m_{π} $\rightarrow \pi$ - π annihilation?
 - maximum below ρ meson near 400 MeV
 - hint for modified ρ meson in dense matter

π -π annihilation: theoretical approaches

- low mass enhancement due to $\pi\pi$ annihilation?
 - spectral shape dominated ρ meson
- vacuum ρ
 - vacuum values of width and mass

- in-medium ρ
 - Brown-Rho scaling

- $\frac{m_{\rho}^{*}}{m_{\rho}} \approx \left(\frac{<\bar{q}q>_{\rho^{*}}}{<\bar{q}q>_{0}}\right)^{1/3} = 1 0.16 \frac{\rho^{*}}{\rho_{0}}$
- dropping masses as chiral symmetry is restored
- Rapp-Wambach melting resonances
 - collision broadening of spectral function
 - only indirectly related to CSR
- medium modifications driven by baryon density
- model space-time evolution
 of collision

Theory versus CERES-1 data

13

- attempt to attribute the observed excess to
 - vacuum ρ meson (- -)
 - inconsistent with data
 - overshoot in ρ region
 - undershoots @ low mass
 - modification ρ meson
 - needed to describe data
 - data do not distinguish between
 - broadening or melting of meson (Rapp-Wambach)
- · · dropping masses (Brown-Rho)
- indication for medium modifications, but data are not accurate enough to distinguish models

largest discrimination
 between ρ/ω and φ
 → need mass resolution!

Alberica Toia

CERES-1 -> CERES-2

- addition of a TPC to CERES
 - improved momentum resolution
 - improved mass resolution
 - dE/dx → hadron identification and improved electron ID
 - inhomogeneous magnetic field
 a nightmare to calibrate

CERES-2 result

- the CERES-1 results persists
 - strong enhancement in the low-mass region
 - enhancement factor

$$(0.2 < m < 1.1 \text{ GeV/c}^2)$$

 $\rightarrow 3.1 \pm 0.3 \text{ (stat.)}$

 but the improvement in mass resolution isn't outrageous

Dropping mass, broadening, or thermal radiation

16

interpretations invoke

- thermal radiation from hadron gas
- vacuum ρ not enough to reproduce the data
- * in-medium modifications of ρ:
 - * broadening ρ spectral shape

(Rapp and Wambach)

thermal radiation

e⁺e⁻ yield calculated from qq annihilation in pQCD (B.Kämpfer et al)

CERES @ low energy (40 GeV/c)

- data taking in 1999 and 2000
 - improved mass resolution
 - improved background rejection
 - results remain statistics limited
- Pb-Au at 40 AGeV
 - enhancement for m_{ee}> 0.2 GeV/c²
 - 5.9±1.5(*stat*)±1.2(*sys*)±1.8(*decay*)

strong enhancement at lower √s or larger baryon density

Alberica Toia

And what about p_T dependence?

- low mass e⁺e⁻ enhancement at low p_T
 - qualitatively in a agreement with $\pi\pi$ annihilation
 - p_T distribution has little discriminative power

Centrality dependence of excess

- naïve expectation: quadratic multiplicity dependence
 - medium radiation ∞ particle density squared
- more realistic: smaller than quadratic increase
 - density profile in transverse plane
 - life time of reaction volume

What did we get from CERES?

- first systematic study of e⁺e⁻ production in elementary and HI collisions at SPS energies
 - pp and pA collisions are consistent with the expectation from known hadronic sources
 - a strong low-mass low-p_T enhancement is observed in HI collisions
- → consistent with in-medium modification of the ρ meson
- → data can't distinguish between two scenarios
 - → dropping ρ mass as direct consequence of CSR
 - \rightarrow collisional broadening of ρ in dense medium
- WHAT IS NEEDED FOR PROGRESS?
 - STATISTICS
 - MASS RESOLUTION

How to overcome these limitations

- more statistics
 - run forever -> not an option
 - higher interaction rate
 - higher beam intensity
 - thicker target
 - needed to tolerate this
 - extremely selective hardware trigger
 - reduced sensitivity to secondary interactions, e.g. in target
 - can't be done with dielectrons as a probe, but dimuons are just fine!
- better mass resolution
 - stronger magnetic field
 - detectors with better position resolution
 - silicon tracker embedded in strong magnetic field!

The NA60 experiment

 a huge hadron absorber and muon spectrometer (and trigger!)

 and a tiny, high resolution, radiation hard vertex spectrometer

Standard μ+μ- detection: NA50

- thick hadron absorber to reject hadronic background
- trigger system based on fast detectors to select muon candidates (1 in 10⁴ PbPb collisions at SPS energy)
- muon tracks reconstructed by a spectrometer (tracking detectors+magnetic field)
- extrapolate muon tracks back to the target taking into account multiple scattering and energy loss, but ...
 - poor reconstruction of interaction vertex (σ₂ ~10 cm)
 - poor mass resolution (80 MeV at the φ)

A step forward: the NA60 case

- origin of muons can be determined accurately
- improved dimuon mass resolution

The NA60 pixel vertex spectrometer

- 12 tracking points with good acceptance
 - 8 small 4-chip planes
 - 8 large 8-chip planes in 4 tracking stations
- ~3% X₀ per plane
 - 750 μm Si readout chip
 - 300 μm Si sensor
 - ceramic hybrid
- 800000 readout channels
 in 96 pixel assemblies

Vertexing in NA60

 $\sigma_z \sim 200~\mu m$ along the beam direction Good vertex identification with ≥ 4 tracks

Extremely clean target identification (Log scale!)

Contributions to mass resolution

- two components
 - multiple scattering in the hadron absorber
 - dominant at low momentum
 - tracking accuracy
 - dominant at high momentum
- high mass dimuons (~3 GeV/c²)
 - absorber doesn't matter
- low mass dimuons (~1 GeV/c²)
 - absorber is crucial
 - momentum measurement before the absorber promises huge improvement in mass resolution
- track matching is critical for high resolution low mass dimuon measurements!

Muon track matching

Muon spectrometer Absorber Pixel telescope

- track matching has to be done in
 - position space
 - momentum space
- to be most effective
- the pixel telescope has to be a spectrometer!

CERN

<u>Improvement in mass resolution</u>

unlike sign dimuon mass distribution before quality cuts and without muon track matching

- mass resolution
- still a large unphysical background

Nothing is perfect: fake matches

- fake match: μ matched to wrong track in pixel telescope
 - important in high multiplicity events

- how to deal with fake matches
 - keep track with best χ^2 (but is is right?)
 - embedding of muon tracks into other event
 - identify fake matches and determine the fraction of these relative to correct matches as function of
 - centrality
 - transverse momentum

Event mixing: like-sign pairs

compare measured and mixed like-sign pairs

accuracy in NA60: ~1% over the full mass range

LMR data: peripheral (N_{ch}<30) In-In collisions

32

Well described by meson decay 'cocktail': η, η', ρ, ω, f and DD contributions (Genesis generator developed within CERES and adapted for dimuons by NA60).

Similar cocktail describes NA60 p-Be,In,Pb 400 GeV data

Alberica Toia

EM transition form-factors for $\omega \rightarrow \mu^+ \mu^- \pi^0$ and $\eta \rightarrow \mu^+ \mu^- \gamma$ peripheral NA60 InIn data

Acceptance-corrected data (after subtraction of η , ω and ϕ peaks) fitted by three contributions:

$$\frac{d\Gamma(\eta \to \mu^{+}\mu^{-}\gamma)}{dm_{\mu\mu}^{2}} = \frac{2\alpha}{3\pi} \frac{\Gamma(\eta \to \gamma\gamma)}{m_{\mu\mu}^{2}} \left(1 - \frac{m_{\mu\mu}^{2}}{m_{\mu}^{2}}\right)^{3} \left(1 + \frac{2m_{\mu}^{2}}{m_{\mu\mu}^{2}}\right) \left(1 - \frac{4m_{\mu}^{2}}{m_{\mu\mu}^{2}}\right)^{1/2} \times \left|F_{\eta}(m_{\mu\mu}^{2})\right|^{2}$$

$$\frac{d\Gamma(\omega \to \mu^{+}\mu^{-}\pi^{0})}{dm_{\mu\mu}^{2}} = \frac{\alpha}{3\pi} \frac{\Gamma(\omega \to \pi^{0}\gamma)}{m_{\mu\mu}^{2}} \left(1 + \frac{2m_{\mu}^{2}}{m_{\mu\mu}^{2}}\right) \left(1 - \frac{4m_{\mu}^{2}}{m_{\mu\mu}^{2}}\right)^{1/2} \left[\left(1 + \frac{m_{\mu\mu}^{2}}{m_{\omega}^{2} - m_{\pi^{0}}^{2}}\right)^{2} - \frac{4m_{\omega}^{2}m_{\mu\mu}^{2}}{m_{\omega}^{2} - m_{\pi^{0}}^{2}}\right]^{3/2} \times \left|F_{\omega}(m_{\mu\mu}^{2})\right|^{2}$$

$$\frac{d R(\rho \to \mu^+ \mu^-)}{d M} = \frac{\alpha^2 m_\rho^4}{3(2\pi)^4} \frac{\left(1 - \frac{4m_\mu^2}{M^2}\right)^{3/2} \left(1 - \frac{4m_\mu^2}{M^2}\right)^{1/2} \left(1 + \frac{2m_\mu^2}{M^2}\right)}{\left(M^2 - m_\rho^2\right)^2 + M^2 \Gamma^2} (2\pi M T)^{3/2} e^{-\frac{M}{T}}$$
• Confirmed anomaly of F_{ω} wrt the VDM prediction.
• Improved errors wrt the Lepton-G results.

hep-ph/0902.2547, submitted to PLB

pole approximation:

$$\left| F(m_{\mu\mu}^2) \right|^2 = \left(1 - m_{\mu\mu}^2 / \Lambda^2 \right)^{-2}$$

- Removes FF ambiguity in the 'cocktail'

LMR data: Min.Bias In-In collisions

Low Mass Region Improvement

- Statistics
- Resolution

Cocktail subtraction (without p)

- how to nail down an unknown source?
- try to find excess above cocktail without fit constraints

- ω and φ: fix yields such as to get, after subtraction, a smooth underlying continuum
- (▼) set upper limit, defined by "saturating" the measured yield in the mass region close to 0.2 GeV (lower limit for excess).
 - (\triangle) use yield measured for $p_T > 1.4$ GeV/c

Excess versus centrality

data – cocktail (all p_⊤)

- •No cocktail ρ and no DD subtracted
- Clear excess above the cocktail ρ, centered at the nominal ρ pole and rising with centrality
- Excess even more pronounced at low p_T

Excess shape versus centrality

Quantify the peak and the broad symmetric continuum with a mass interval C around the peak (0.64 <M<0.84 GeV) and two equal side bins L, U

Peak/cocktail ρ drops by a factor ~2 from peripheral to central:

the peak seen is not the cocktail ρ

nontrivial changes of all three variables at dN_{ch}/dy>100?

continuum =
$$3/2(L+U)$$

peak = $C-1/2(L+U)$

Fine analysis in 12 centrality bins

Comparison with prominent models

- Rapp & Wambach
 - hadronic model with strong broadening but no mass shift
- Brown & Rho
 - dropping mass due to dropping chiral condensate

- calculations for all scenarios in In-In for $dN_{ch}/d\eta = 140$ (Rapp et al.)
- spectral functions after acceptance filtering, averaged over space-time and momenta
- Keeping original normalization

data consistent with broadening of ρ (RW), mass shift (BR) not needed

Role of baryons

- improved model calculation (Rapp & van Hees)
 - fireball dynamics
 - 4π processes
 - absolute normalization!
 - towards high p_T the vacuum ρ becomes more important (Rapp/van Hees; Renk/Ruppert)

- without baryons
 - not enough broadening
 - lack of strength below the ρ peak

CERN

The high mass region (M>1GeV)

hadron-parton duality

Ruppert / Renk

- dominant at high M
 - hadronic processes
 - 4π ...

- dominant at high M
 - partonic processes
 - mainly qqbar annihilation

Intermediate mass region (IMR)

- NA50: excess observed in IMR in central Pb-Pb collisions
 - charm enhancement?
 - thermal radiation?

answering this question was one of the main motivations for building NA60

CERN

Disentangling the sources in the IMR

 charm quark-antiquark pairs are mainly produced in hard scattering processes in the earliest phase of the collisions

 charmed hadrons are "long" lived → identify the typical offset ("displaced vertex") of D-meson decays (~100 μm)

 need superb vertexing accuracy (20-30 μm in the transverse plane) → NA60

How well does this work?

- measure for vertex displacement
 - primary vertex resolution
 - momentum dependence of secondary vertex resolutions
 - → "dimuon weighted offset"
- charm decays (D mesons) → displaced
- $J/\psi \rightarrow prompt$
- vertex tracking is well under control!

IMR excess: enhanced charm?

- approach
 - fix the prompt contribution to the expected Drell-Yan yield
 - check whether the offset distribution is consistent with charm

How many prompt pairs are needed?

approach

- fit offset distribution with both charm and prompt contributions as free parameters
- prompt component
 - ~2.4 times larger than Drell-Yan contribution
- charm component
 - ~70% of the yield extrapolated from NA50's p-A data

Decomposition of mass spectrum

- IMR: 1.16 < M < 2.56 GeV/c² (between φ and J/ψ)
- definition of excess
 - excess = signal [Drell-Yan (1.0 ± 0.1) + Charm (0.7 ± 0.15)]

Centrality & p_T dependence of IMR excess

- increase more than proportional to N_{part}
- but also more than proportional to N_{coll}!

 p_T distribution is significantly softer than the (hard) Drell-Yan contribution: rules out higher-twist DY? [Qiu, Zhang, Phys. Lett. B 525, (2002) 265]

More detailed look at p_T dependence

- investigate excess in different mass regions as function of m_T
 - fit with exponential function (shown for IMR)
 - extract T_{eff} slope parameter

$$\frac{dN}{m_T dm_T} \propto e^{-m_T/T_{eff}}$$

- is this related to temperature?
- if so, this is close to the critical temperature at which the QCD phase transition occurs

Interpretation of Teff

- interpretation of T_{eff} from fitting to exp(-m_T/T_{eff})
 - static source: T_{eff} interpreted as the source temperature
 - radially expanding source:
 - -T_{eff} reflects temperature and flow velocity
 - $-T_{eff}$ dependens on the m_T range

-large
$$\mathbf{p_T}$$
 limit: $T_{e\!f\!f} = T_f \sqrt{\frac{1+\mathbf{v}_T}{1-\mathbf{v}_T}} \quad p_T >> m$ common to all hadrons -low $\mathbf{p_T}$ limit: $T_{e\!f\!f} \approx T_f + \frac{1}{2} m \left\langle \mathbf{v}_T \right\rangle^2 \quad p_T << m$ mass ordering of hadrons

- final spectra: space-time history T_i→T_{fo} & emission time
 - hadrons
 - -interact strongly
 - -freeze out at different times depending on cross section with pions
 - -T_{eff} → temperature and flow velocity at thermal freeze out
 - dileptons
 - -do not interact strongly
 - -decouple from medium after emission
 - -T_{eff} → temperature and velocity evolution averaged over emission time

Mass ordering of hadronic slopes

- separation of thermal and collective motion
- reminder
 - blast wave fit to all hadrons simultaneously
- simplest approach

$$T_{eff} \approx T_f + \frac{1}{2}m \left\langle \mathbf{v}_T \right\rangle^2 \quad p_T << m$$

- slope of <T_{eff}> vs. m is related to radial expansion
- baseline is related to thermal motion
- works (at least qualitatively) at SPS

M (Gev)

Example of hydrodynamic evolution

- dileptons may allow to disentangle emission times
 - early emission (parton phase)
 - large T, small v_T
 - late emission (hadron phase)
 - small T, large v_T

- monotonic decrease of T from
 - early times to late times
 - medium center to edge
- monotonic increase of v_T from
 - early times to late times
 - medium center to edge

NA60 analysis of m_T spectra in In-In

Phys. Rev. Lett. 96 (2006) 162302

- decomposition of low mass region
 - contributions of mesons (η,ω,φ)
 - continuum plus ρ meson
 - extraction of vacuum ρ
- hadron m_T spectra for
 - η,ω,φ
 - vacuum ρ
- dilepton m_T spectra for
 - low mass excess
 - intermediate mass excess

Alberica Toia

Examples of m_T distributions

variation with mass are obvious

Dilepton T_{eff} systematics

- hadrons (η, ω, ρ, φ)
 - T_{eff} depends on mass
 - T_{eff} smaller for φ, decouples early
 - T_{eff} large for ρ, decouples late
- low mass excess
 - clear flow effect visible
 - follows trend set by hadrons
 - possible late emission
- intermediate mass excess
 - no mass dependence
 - indication for early emission

Polarization of dileptons

NA60 also measured the polarization (in the Collins-Soper frame) for m≤ m_φ

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$$

Lack of any polarization in excess (and in hadrons) supports emission from thermalized source.

Alberica Toia

55

Evidence of ω in-medium effects?

Flattening of the p_T distributions at low p_T , developing very fast with centrality.

Low-pT ω 's have more chances to decay inside the fireball?

Appearance of that yield elsewhere in the spectrum, due to ω mass shift and/or broadening, unmeasurable due to masking by the much stronger $\pi\pi\to\mu\mu$ contribution.

Disappearance of yield out of narrow ω peak in nominal pole position

⇒ Can only measure disappearance

56 Alberica Toia

56

ω yield suppression

Determine suppression vs p_T with respect to $dN/dm_T^2 \sim \exp(-m_T/T_{eff})$ Eur.Phys.J. C (2009), in press nucl-ex/0812.3053 (extrapolated from p_T >1GeV/c)

Account for difference in flow effects using the results of the Blast Wave analysis

Reference line: $\phi/N_{part} = 0.0284$ f.ph.s. (central coll.)

Consistent with radial flow effects

Reference line: $\omega/N_{part} = 0.131$ f.ph.s.

Strong centrality-dependent suppression at p_T <0.8 GeV/c, beyond flow effects

What did we get from NA60?

- high statistics & high precision dimuon spectra
- decomposition of mass spectra into "sources"
- gives access to in-medium ρ spectral function
- data consistent with broadening of the ρ
- data do not require mass shift of the ρ
- large prompt component at intermediate masses
- dimuon m_T spectra promise to separate time scales
 - low mass dimuons shows clear flow contribution indicating late emission
 - intermediate mass dimuons show no flow contribution hinting toward early emission

